On the chromatic number of random geometric graphs
نویسندگان
چکیده
منابع مشابه
On the chromatic number of random geometric graphs
Given independent random points X1, . . . , Xn ∈ Rd with common probability distribution ν, and a positive distance r = r(n) > 0, we construct a random geometric graph Gn with vertex set {1, . . . , n} where distinct i and j are adjacent when ‖Xi − Xj‖ ≤ r. Here ‖.‖may be any norm on Rd, and ν may be any probability distribution on Rd with a bounded density function. We consider the chromatic n...
متن کاملOn the Chromatic Number of Geometric Graphs
Let S be a finite or infinite set in the Euclidean space 3E . We definte the graph G(S) on the vertex-set S by joining x,y c S iff p(x,y) / = their distance / is 1 . In this paper we investigate various chromatic properties and the dimension of h such graphs . Thus for example X e (IE ) will be defined as the maximum t such that if G n = G(S) S c Eh then one can omit o(n 2 ) edges so that the g...
متن کاملThe Distant-l Chromatic Number of Random Geometric Graphs
A random geometric graph Gn is given by picking n vertices in R d independently under a common bounded probability distribution, with two vertices adjacent if and only if their l-distance is at most rn. We investigate the distant-l chromatic number χl(Gn) of Gn for l ≥ 1. Complete picture of the ratios of χl(Gn) to the chromatic number χ(Gn) are given in the sense of almost sure convergence.
متن کاملOn the Chromatic Number of Random Graphs
In this paper we consider the classical Erdős-Rényi model of random graphs Gn,p. We show that for p = p(n) ≤ n−3/4−δ, for any fixed δ > 0, the chromatic number χ(Gn,p) is a.a.s. , +1, or +2, where is the maximum integer satisfying 2( −1) log( −1) ≤ p(n−1).
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2011
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-011-2403-3